

Interactive Realtime Multimedia Applications on

Service Oriented Infrastructures

ICT FP7-214777

WP4 Application Analysis and Adaptation

D4.2.1: Interface Definition to the IRMOS SOI

IRMOS_WP4_D4_2_1_GILABS_v1_0

Scheduled Delivery: 30.06.2009
Actual Delivery: 30.06.2009
Version 1.0

Project co-funded by the European Commission within the 7th Framework Programme

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission)

RE Restricted to a group specified by the consortium (including the Commission)

CO
Confidential, only for members of the consortium (including the
Commission)

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 2/38

Responsible Partner: GILABS

Revision history:

Date Editor Status Version Changes

26.01.09 Wolfgang
Huther

Initial
Version

0.01 Initial Table of Contents

25.03.09 Wolfgang
Huther

Initial
Version

0.02 Includes all input received
by March 25th

30.03.09 Wolfgang
Huther

Draft 0.03 Includes all comments
discussed during WP4 AC

1.04.09 Wolfgang
Huther

Draft 0.04 Includes all input received
by April 1st 18.00

15.04.09 Wolfgang
Huther

Draft 0.05 Includes part of the input
received by April 15th 18.00

29.04.09 Alessandro
Mazzetti

Draft 0.06 integration of partners’
contributions

08.06.2009 Ralf Einhorn Draft 0.06a integrated ASCD section
12.06.2009 Alessandro

Mazzetti
Draft 0.08 integration of partners’

contributions
16.06.2009 Ralf Einhorn Draft 0.08a bug fixes
26.06.2009 Ralf Einhorn Draft 0.09 changes according to

reviewers’ comments
30.06.2009 Ralf Einhorn Draft 0.10 final changes from review
30.06.2009 Alessandro

Mazzetti
Final 1.0 final version

Authors
Wolfgang Huther, Rolf Hedtke, Thomas Bub, Stefan Waldschmidt (DFT),
Lars Fürst, Ralf Einhorn (DTO)
Michael Braitmeier (USTUTT)
Alessandro Mazzetti (GILABS)
Eduardo Oliveros (TID)

Internal Reviewers
Marcus Kessler (ALUD)
Carsten Herpel (DTO)

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 3/38

Patrick Mandic (USTUTT)

Copyright
This report is © Giunti Labs and other members of the IRMOS Consortium 2008-2009. Its
duplication is allowed only in the integral form for anyone’s personal use and for the
purposes of research or education.

Acknowledgements
The research leading to these results has received funding from the EC Seventh Framework
Programme FP7/2007-2011 under grant agreement n° 214777

More information
The most recent version of this document and all other public deliverables of IRMOS can be
found at http://www.irmosproject.eu

http://www.irmosproject.eu/

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 4/38

Glossary of Acronyms
Acronym Definition

AC Application Component

ACC Application Client Component

AD Application Description

ASC Application Service Component

ASCD ASC Description

A-SLA Application Service Level Agreement

D Deliverable

EASC External Application Service Component

EC European Commission

EE Execution Environment

ESC External Service Component

EU European Union

FS Framework Service(s)

FSC Framework Service Controller

IRMOS Interactive Real-time Multimedia Applications on Service Oriented
Infrastructures

ISONI Intelligent Service Oriented Network Infra-structure

SC Service Component

SLA Service Level Agreement

SaaS Software as a Service

SOA Service Oriented Architecture

SOI Service Oriented Infrastructure

T-SLA Technical Service Level Agreement

VMU Virtual Machine Units

VSN Virtual Service Network

VSND VSN Description

WEE Workflow Enactment Engine

WP Work Package

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 5/38

Table of Contents
1. Executive Summary .. 8

2. Introduction ... 9

2.1. Scope of the Document .. 9

2.2. General Information about the Deliverable .. 10

3. Interface Requirements .. 12

3.1. Requirements for Application Development Interfaces .. 17

3.1.1. Modelling of ASC and ASCD Generation .. 17

3.1.2. ASC Packaging and Transfer .. 18

3.1.3. Benchmarking ... 18

3.1.4. AD Generation ... 18

3.2. Requirements for System Interfaces ... 18

3.2.1. SLA Negotiation and Resource Provisioning ... 19

3.2.2. Execution ... 19

3.2.3. Connectivity among Service Components .. 19

3.2.4. Monitoring .. 19

4. Application Service Component Description Content .. 20

4.1. Purposes of the ASCD .. 21

4.1.1. Generating the VSND .. 21

4.1.2. ASC Configuration .. 22

4.1.3. Framework internal Use .. 22

4.2. The ASCD Approach ... 22

4.3. Elements of the ASCD .. 23

4.3.1. Application-related (high level) Parameters ... 24

4.3.2. Resource-related (low level) Parameters ... 24

4.3.3. Mapping Rules ... 24

4.3.4. Lookup Tables ... 25

4.3.5. Profiles (optionally) .. 25

4.4. Framework Internal ASCD Content ... 25

4.4.1. Intermediate Parameters .. 25

4.4.2. FSM Model ... 25

4.4.3. Benchmarking Setup ... 26

4.4.4. Monitoring .. 26

4.4.5. ASC Package.. 26

4.4.6. Control Interfaces (optional) ... 26

4.5. ASCD Definition ... 26

4.5.1. Parameter Definition Entities .. 27

4.5.2. ASCD Element Definition Summary .. 28

4.6. Formalized ASCD Elements ... 29

4.6.1. Parameters .. 29

4.6.2. Complex Elements ... 30

5. Application Description .. 31

5.1. Workflows in Application Descriptions ... 31

5.2. Application Description Templates ... 31

6. Functional Interfaces ... 33

6.1. Internal Framework Service Interface ... 33

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 6/38

6.1.1. Functionality and Purpose .. 33

6.1.2. ASC Wrapper .. 34

6.1.3. Configuration and Instantiation ... 35

6.1.4. Control .. 35

6.1.5. Monitoring .. 35

6.2. External Framework Interface .. 35

7. Conclusion ... 37

8. References ... 38

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 7/38

List of Figures
Figure 1: D4.2.1 in IRMOS context ... 10

Figure 2 Application-IRMOS Interfaces ... 11

Figure 3: IRMOS Platform Architecture ... 13

Figure 4: IRMOS Chain .. 15

Figure 5: IRMOS Phases for Development and Usage .. 16

Figure 6: The different Participants in the Creation of an Application 16

Figure 7: Sample IRMOS Application Components and Communication 18

Figure 8: Simplified Application Service Component Model ... 20

Figure 9: Purposes of the ASCD... 21

Figure 10: Parameter Mapping (simplified) .. 21

Figure 11: ASCD Elements and Purposes .. 23

Figure 12: Follow-up of Steps from initial ASCD to a final A-SLA .. 32

Figure 13: Execution Interface Functionality .. 34

Figure 14: Execution Interface Wrapper ... 34

Figure 15: IRMOS-ACC Interface .. 36

List of Tables
Table 1: ASCD Element Choice/Creation, Value Setting, Use .. 28

Table 2: ASCD Parameters (formal) .. 29

Table 3: Additional ASCD Content (formal) ... 30

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 8/38

1. Executive Summary
The three scenarios defined in deliverable D2.1.1 have to be adapted to the IRMOS
architecture. Therefore the interfaces to the IRMOS SOI have been defined in this
document. The IRMOS framework services used for supporting the lifecycle of
applications in the IRMOS SOI are developed by WP5. So the interface definition given in
this document serves as a gateway from the application to the execution environment
and is also a very important input to WP5.

In this deliverable first the requirements for the interfaces are investigated. There are
requirements for the application interface in the three different phases - application
component development, application service design, use – and requirements for the
system interface - for control, configuration and monitoring.

Three types of interfaces are described in this document:

1. The application service component description (ASCD) is defined during the
application development phase. This ASCD must describe all parameters of the
application component so that it can be used by the application service designer
and also later when it is used in the real-time IRMOS environment. The ASCD is
used for the configuration of the service component, the framework services, and
in the execution environment for the virtual service network (VSN) description.
The elements of the ASCD include high level parameters, which are application
related, and resource related low level parameters. For execution it is necessary
to extract the low level parameters from the high level parameters. This can be
done by mapping rules or by lookup tables. The framework itself needs
parameters from the ASCD for modelling, benchmarking, and monitoring. The
definition of the ASCD is developed with the specification of the elements and
parameters.

2. In the application service design phase the application description (AD) defines
the topology of an application, i.e. how different application components (AC) are
connected by network links. The application description provides additional
information with regard to the workflow of the application. The attributes given
in an ASCD are defined with concrete values for the application, based on the
client’s need. This whole set of information is then ready to be incorporated as a
part of the final A-SLA request. An application description template specifies all
parameters of all components and all links.

3. The functional interfaces between framework services and ACs are used during
execution time. The application service components (ASC) need an interface for
obtaining their configuration and the ASC should be controlled and monitored by
the framework services. This happens completely framework internal. The
application client component (ACC) needs to obtain information from the IRMOS
portal about how to access the application, e.g. the network address of the ASC to
connect to. An ASC wrapper is proposed between the actual application
component and the framework service.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 9/38

2. Introduction

2.1. Scope of the Document
The scope of this document is to elaborate and define the interactions with the IRMOS
SOI. This deliverable is based on the following documents:

 D2.1.1 Initial version of Requirements Analysis Report [1], where the use cases are
described and the technical requirements as well as the parameters for timing,
performance, reliability, and availability of the three scenarios “Digital film
postproduction” “Virtual and augmented reality” and “E-learning” have been
identified.

 D4.1.1 Definition and implementation of the three scenarios and its real time
requirements [3] defines the phases for the design process, the instantiation and
execution.

The relation of these documents and this deliverable to the IRMOS SOI is shown in
Figure 1. This document describes the requirements for the interface between the
application side and the IRMOS Framework. In D4.1.1 [3] three application phases are
defined in an IRMOS environment:

 Application Component Development
 Application Service design
 Use

While WP5 develops the IRMOS framework services for supporting the lifecycle of
applications in the IRMOS SOI, the main focus of this document is the development
phase. Therefore the interfaces needed for WP5 to prepare the application components
for use in the IRMOS real-time environment are defined here as well as the internal
interfaces to the framework service used during the actual execution.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 10/38

Filmpostproduction

Application

D4.4.1

Virtual & Augmented R.

Application

D4.4.1

eLearning

Application

D4.4.1

User

requirements

D2.1.1

Application

requirements

D4.1.1

D4.2.1 Interface Definition to the IRMOS SOI

User

requirements

D2.1.1

User

requirements

D2.1.1

Application

requirements

D4.1.1

Application

requirements

D4.1.1

IRMOS SOI

© DFT Digital Film Technology

Figure 1: D4.2.1 in IRMOS context

2.2. General Information about the Deliverable
Before defining the interfaces it is necessary to identify the requirements. So in
chapter 3 the application components and the IRMOS platform architecture as well as
the application phases are explained. Besides the application interfaces it is also
necessary to evaluate the requirements for the system interface, which is required for
monitoring, configuration and control.
Chapter 4 is a central part of the document. Here the application service component
description (ASCD) is defined in detail. The ASCD is the only ‘off-line’ interface between
the application and the framework layer, so everything must be described in the ASCD.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 11/38

The ASCD is used for the configuration of the service component; the framework
services need this information for modelling, benchmarking and monitoring, and for
generating the VSN description for the execution environment. The elements of the
ASCD include application related high level parameters and resource related low level
parameters. Parameters for framework internal use are also contained in the ASCD. The
formalized ASCD elements, parameters and complex elements are described in this
section.
The application description (AD) is defined in chapter 5. This describes the topology of
an application consisting of application components (AC) and network links in between
these ACs. The application description provides additional information with regards to
the workflow of the application. An application description template specifies all
parameters of all components and all links.
The functional interfaces between framework services and ACs are used during
execution time. These are discussed in chapter 6. There are two different needs for
functional interfaces: The ASCs need an interface for obtaining their configuration and
should be controlled and monitored by the framework services, and the ACC needs to
obtain information from the IRMOS portal about how to access the application. To
simplify integration into IRMOS an ASC wrapper between the actual application
component and the framework services is proposed.
Figure 2 shows the four different types of interfaces discussed in this document.

IRMOS framework

IRMOS EE

ACC

ASC

Application

Description (AD)

ASC
FSC

Application

Developer

Client

ASC

Developer

IRMOS

portal

ASCD

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Descriptive Interfaces Functional Interfaces

Figure 2 Application-IRMOS Interfaces

This document ends with the concluding chapter 7 and the list of references in
chapter 8.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 12/38

3. Interface Requirements
This section contains a description of the initial set of requirements imposed on the
existing interfaces with IRMOS and more concretely with the IRMOS portal, which is the
connection point between developers as well as users and IRMOS. Many of the concepts
described in this chapter are analysed in more detail in following chapters: the
application service component description (ASCD), the application description (AD), and
functional interfaces.

The relation with the framework services is clearly split in two phases: the off-line and
the on-line phases. During the off-line phase all the development, modelling and
benchmarking tasks are performed; this will allow the framework services to create the
set of internal rules that will allow the estimation of infrastructure resources needed by
the application execution. Moreover, this will make possible the generation of the set of
artefacts needed for the subsequent application execution (like the A-SLA template, the
T-SLA…).

First the structure of an application as described in the deliverable 4.1.1 “Definition and
implementation of the three scenarios and its real time requirements” [3] will be
depicted; this document specifies appropriate components which connect the various
application components to the framework.

The following terminology regarding application components is used in IRMOS:

 Application Component (AC): a piece of software developed by an application
component developer which performs a specific task of the application. There are
three types of application components:
 Application Service Component (ASC): AC running inside an ISONI EE and actually

doing the application specific work, e.g. format conversion or rendering. It will be
deployed within a VMU to be able to run in ISONI. A wrapper is used to adapt the
framework service interface to an individual ASC.

 Application Client Component (ACC): ACC is running outside ISONI but as a part of
an application, e.g. a video player (‘GUI node’) showing images coming from an
ASC or a node connected to a scanner – this cannot be virtualized in ISONI. These
nodes are called ‘legacy’ in the ISONI terminology. From an application point of
view these devices are essential for numerous scenarios.

 External Application Service Component (EASC): This is an ASC but running
outside ISONI. An EASC usually attaches a unique device which cannot be
virtualized, e.g. a hardware accelerator

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 13/38

ISONI Portal

ISONI info
Execution

Environment Network

d
evelo

p
m

en
t

n
ego

tiatio
n

cu
st. m

o
n

ito
r

Application
DeveloperCustomer

Consumer

A
D

 m
o

n
ito

r

ISONI

Workflow
Management

SLA
Management

Advertisement
& Discovery

access

instantiate

d
isco

very

n
ego

tiatio
n

m
o

n
ito

r

Application
Support

Framework
Services

CC

VSN

FS
Instance

FS
Instance

ASC

ASC

©
N

at
io

n
al

 T
ec

h
n

ic
al

 U
n

iv
er

si
ty

 o
f

A
th

en
s

app monitor

app control

EASC

ACC ASC

Figure 3: IRMOS Platform Architecture

The IRMOS platform architecture is shown in Figure 3, as defined in [2] is shown in
Figure 3. The figure differentiates the main IRMOS platform subsystems: the framework
services (SLA Management, Workflow Management, Monitoring, etc), and ISONI
(Execution Environment and the Intelligent Network). IRMOS will interface to the
application side via its framework services. The application service itself will run on the
virtualized service platform ISONI [6] whose interfaces are not exposed to the
application but to the framework services.
For using the ASCs, these modules have to be described for use in the IRMOS framework
and must be registered (i.e. published) at a repository. The definition of the input and
output interfaces of an ASC as well as the required computing and network resources is
done in the application service component description (ASCD). The ASCD has to be
provided by the ASC developer. Performance parameters may be obtained by
benchmarking the application on a reference platform. To define the behavioural model
of an ASC a state machine has to be added which describes the ASCs responses to
important events.

For deployment an ASC has to be prepared as installable software package (packaging).
ISONI implements a VMU-based deployment, this means that the VMU factory [5]
installs the package on a prototypical VMU which is distributed and started on demand
in an ISONI EE.

As shown in Figure 4, three different application life cycle phases are defined in [3]:

 Application Component Development

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 14/38

 Component Development: application components (ACs), which for example are
extracted from a stand-alone application, are built. This includes service (ASC,
EASC) and client components (ACC), where framework service interfaces are
integrated.

 Component Packaging: deployment packages for ASCs and ACCs are built (e.g. as a
RPM1).

 Component Publication: an ASC description (ASCD) is generated and passed to the
IRMOS ASCD repository.

 Application Service Design

 Application Development: The application developer assembles the ACs (ASCs,
EASCs, ACCs) to an application. The result of this process is an application
description (AD), which is a template enumerating the necessary components and
their interconnections – no actual instantiation is involved at this stage. Selected
ASCs are connected to a workflow template which is passed to the IRMOS
application repository.

 Service Design: the application is put in a business perspective. An SLA template is
added.

 Use

 Application Concretion: the client defines her/his requirements, i.e. the application
template is updated with concrete parameter values.

 Discovery, SLA Negotiation: the client books the service.
 Reservation: the Application Service Provider books resources (for the client).
 Service Instantiation: the corresponding ISONI VSN, VMUs (containing ASCs), file

systems etc. for the configured application is set up. Instantiation is triggered by
the Workflow Enactment Engine (WEE), where the entity orchestrating and
initiating of the ASCs is done by interfacing with ISONI and the client outside (e.g.
via an “IRMOS portal”). A generic central instance (Framework Service Controller,
FSC) is instantiated together with the SCs of the application workflow to manage
the initiated ASCs. The FSC instance might also run as an ASC, and therefore the
FSC itself has to be initiated from outside (probably the WEE).

 ASC Configuration: the instantiated ASCs are configured according to the
application description.

 Execution: ASCs are launched.
 Cleanup: ASCs are stopped, VSN torn down.

Figure 4 shows the whole chain from the development of a single component,
assembling applications, up to its concrete usage.

1 http://rpm.org/

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 15/38

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

use

application

service

design

application

component

development

AC

development

ASC, ACC

AC

packaging

ASC

package

ASC

publication

ASCD

application

development

application

(template)

description

service

design

(application)

service, SLA

template

application

concretion

application +

user specific

paramenters

discovery,

SLA

negotiation

concrete SLA

reservation

booked

resources

service

instantiation

active

environment

ASC

configuration

ready-to-use

application

execution

running

service

cleanup

freed

resources

ASCD
monitoring

evaluation

benchmarking use only

Figure 4: IRMOS Chain

Each ASC and each IRMOS application has to be created off-line (related to the actual
use). The applications are set up by assembling ACs. Finally these applications
(described by an AD) can be used multiple times (“on-line”).
The AC developer will focus on the first use case shown in Figure 5 which however is the
most complex as it comprises all phases. Ideally every action starting from
“(benchmark) use” will be done by the framework services (Figure 5).

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 16/38

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

for

each

use

for

each

application

for

each

ASC

application

component

development

benchmark

application

design

(benchmark)

use

application

design

(regular)

use

(updated)

ASCD

(application)

service, SLA

template

(application)

service, SLA

template

ASCD(s)

monitoring

evaluation

o
ff

-l
in

e
o

n
-l
in

e

Figure 5: IRMOS Phases for Development and Usage

As described in Figure 4 and Figure 5, there are several activities that developers must
perform to have an application ready to be executed in IRMOS.

© Telefónica I+D, 2009

Figure 6: The different Participants in the Creation of an Application

The ASC developer creates the ASCs and their descriptions (ASCD) as well as EASCs and
ACCs that are not executed inside IRMOS but that interact with the ASCs deployed inside
the IRMOS platform.
The ASC developer also prepares a benchmarking set-up for the ASC.
The application developer creates the application based on the different ACs, and
describes the application and the workflow that ultimately will include the description
of the VSN in a format as expected by the infrastructure (ISONI).

The framework services constitute the only interface with the application provider. The
only interaction among the application and IRMOS is performed through the framework

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 17/38

service portal, which means that the framework services layer should provide a set of
tools to support the development and execution of application in IRMOS. This
functionality comprises:
 Modelling the ASC (ASCD), the ASCD is created by the ASC developer using a set of

tools provided by the framework services inside its service engineering tools. Those
models will be used by the framework services to generate the set of artefacts used
internally in IRMOS and that will also facilitate the generation of those artefacts
needed internally by ISONI like the application and technical SLA templates, VSND
and the workflow description.

 Benchmarking, the ASC developer will create a benchmarking setup (an
“application” in terms of IRMOS) to let the FS test the performance and resources
utilization of the ASC under different circumstances. The result of this benchmarking
will be used by the framework services to perform, among other activities, the
mapping between application specific SLA terms (A-SLA) and low level technical SLA
(T-SLA) applied to ISONI.

 The framework services will (i) provide the tools to generate the A-SLA template,
based on the input provided by the application developer and the application
provider (for instance to specify the final price of a service) in the ASCD and the AD,
and (ii) during the initial phases of the execution of one application the FS will
perform the SLA negotiation among all the partners involved: the client, the
application provider and the ISONI provider2.

 To support the benchmarking and the SLA Management (detection of SLA violations
and the realisation of management actions like SLA re-negotiation) the framework
services will also have monitoring mechanisms to gather information about the
infrastructure resources utilization (provided by ISONI) and the application
performance (provided directly by the ASC during the execution).

 Previous to the execution of any application a transfer of the ASC software
packages and internal deployment into ISONI VMU factory is needed.

 And finally, during the execution of the application a workflow enactor inside the
framework services will orchestrate the execution of the ASC defined by the business
processes of the application.

3.1. Requirements for Application Development
Interfaces

3.1.1. Modelling of ASC and ASCD Generation

The ASCD contains all the information that the framework services require to know
about the ASC, this includes information about the behaviour of the component, its
interfaces, configuration parameters, benchmarking information, etc.
All aspects of the ASCD are described in more detail in section 4.

2 The SLA between the Application Provider and the IRMOS Provider is considered as a pre-established
long term SLA.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 18/38

3.1.2. ASC Packaging and Transfer

Before an application can be executed the ASC packages have to be published to IRMOS.
The IRMOS portal should provide some mechanism to allow the developers to transfer
the ASC inside IRMOS or to configure the location of those packages so the software can
be downloaded by the platform as needed.

3.1.3. Benchmarking

Benchmarking will be done by the framework services (FS). As a result the measured
parameters are evaluated and used to update content (like rules and lookup tables) of
the ASCD.

3.1.4. AD Generation

The Application Description (AD) describes the application as a whole; it contains the
information needed to generate the VSND (the structure of the application) and the
workflow description (the execution process).
This is described in more detail in section 5.

3.2. Requirements for System Interfaces
The components and their relationships within a concrete IRMOS application (focussed
on application aspects) are shown in Figure 7: The client and its ACC gets access to the
application service via an IRMOS portal. All ASCs are controlled by the FSC. Application-
specific communication takes place independently from the framework layer.

ISONI

user

ACC

IRMOS portal

ASC

ASC

EASC

FSC

ACC

 framework

 application

user ©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Figure 7: Sample IRMOS Application Components and Communication

The following requirements for the “on-line” interfaces have been identified.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 19/38

3.2.1. SLA Negotiation and Resource Provisioning

Previous to the execution of the application there is a SLA negotiation among different
actors of the IRMOS value chain, the client, the application provider, the IRMOS provider
and ISONI providers. All these processes are managed by IRMOS, mainly by the
framework services. The generation of the A-SLA templates and the A-SLA and T-SLA as
the result of the SLA negation is completely transparent to the developers. All the
information required to generate the set of artefacts required by the SLA negotiation is
extracted from the information provided by the ASCD and the AD.

3.2.2. Execution

The client initiates the execution of the application by accepting an A-SLA. All the
resource provisioning required by the execution has been performed internally inside
IRMOS; the workflow description has also been created internally based on the
information provided by the developers.
The workflow enactor is the entity inside the FS in charge of configuring the (E)ASCs and
starting their execution. ACCs are started by the client; they get their configuration data
via the IRMOS portal.

3.2.3. Connectivity among Service Components

As described in Figure 7, ISONI provides the mechanism to interconnect EASCs and ACCs
with ASCs inside IRMOS. ASCs that require external connectivity will have public IPs to
enable direct connections among ASCs and EASCs/ACCs [7].

3.2.4. Monitoring

The application execution has to be monitored by the FSC to keep track of the execution
status. Moreover, monitoring and evaluation of the obtained data will take place for
benchmarking IRMOS ASCs.
During the execution phase, the monitoring service gathers information both about low-
level performance parameters coming from the ISONI infrastructure through its
metering service as well as information about high-level performance parameters
coming from the ACSs that are being executed.
For benchmarking, while the SLA includes only low level parameters to constraint
performance, monitoring information from the evaluator is propagated to the mapping
service for calibrating the models in order to improve future mapping of application
parameters to resource level parameters.
While obtaining generic low level monitoring data from ISONI is quite straight-forward
an interface is required to request monitoring data from ASCs. This affects both the
description of an ASC (to determine about available monitoring parameters) as well as
real-time communication during execution.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 20/38

4. Application Service Component
Description Content

Applications in IRMOS are made of ACs. The input of the first AC and the output of the
last AC within an application chain are equal to the input and output of the whole
application and therefore will be visible – and configurable – by the client.
Output and input of subsequent ACs are identical so that there are dependencies for the
parameters of these ACs. However the processing parameters of each AC again affect the
output; thus it is not sufficient to solely regard the endpoint ACs of the application as
configuration parameters can be applicable to all ACs of the chain.
Figure 8 shows a simplified ASC model taken from D5.1.1 [4]. It contains the application
relevant aspects while framework service related information is not shown.

Input Bandwidth Output Bandwidth

Application Service Component

Processing

P
a

ra
m

e
te

rs

Input Data Output Data

E
n

v
ir
o

n
m

e
n

t

Processing Throughput

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Figure 8: Simplified Application Service Component Model

The ASC model will be used to optimize resource usage and throughput. Elements
describing the ASC in this respect can be derived from this diagram.
Apart from resource determination, all functional aspects of ASCs relevant for
interconnecting ASCs – and consequently for setting up the execution environment –
(e.g. network or storage connections) have to be described.
This chapter identifies necessary items for the ASCD. At the state of writing they are
under discussion and hence subject of change.
First it will be considered what the ASCD is used for (4.1). After this parameters are
classified (4.3, 4.4). Then it will be determined who is involved in defining (choosing or
creating), setting and using parameters (4.5). Finally a first step is taken towards formal
implementation in form of a description language (4.6). All the complex processes
involved in handling these parameters are not in the primary scope of this document.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 21/38

4.1. Purposes of the ASCD
To focus on the ASCD content let’s assume for the moment that the ASCD already
contains all necessary information – the methods how the information finds its way to
the ASCD will be discussed later.
The ASCD is the only ‘off-line’ interface between application and framework layer, i.e.
everything the FS ‘knows’ about the ASC (and the derived applications) must be
conveyed by the ASCD. Therefore several purposes have to be covered. Figure 9 shows
for what kind of functionality the content of the ASCD is used. These functions are
interrelated with the ASCD content and will be described in the following.3
Note that the ASCD is handled by the FS only; however its content will be used to enable
the FS to interact with the execution environment and the actual ASC.

ASC

execution

environment

VSN

description

ASCD

framework

services

ASC

configuration

modelling,

benchmarking,

monitoring, etc.

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Figure 9: Purposes of the ASCD

4.1.1. Generating the VSND

One of the main purposes of the ASCD is to enable the FS to generate the VSND needed
for executing the application in the IRMOS environment. The VSND represents the
configuration of the execution environment. Besides setting functional parameters (like
IP addresses) the FS performs the mapping from high to low level resource parameter
values in an application agnostic way. Therefore rules are applied (Figure 10).

application
execution

environment

VSN

description

application

description

framework

services

rules

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Figure 10: Parameter Mapping (simplified)

3 Note that the diagram does not cover the temporal flow or a lifecycle or where the information is coming
from – it just denotes which information (assumed to be present) from the ASCD is used for what. E.g. data
obtained from benchmarking will be feed back to the ASCD.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 22/38

The starting point for achieving this functionality of the ASCD is the input required by
the VSND, i.e. the execution environment defines which (low) level parameters have to
be set in the VSND. All of the configuration information for setting up the execution
environment must be set by the FS either directly or indirectly (i.e. IP addresses,
bandwidth etc.). However some may just be passed 1:1, e.g. the number of threads (i.e.
to determine whether it makes sense to use multi-core processors) or the time span
needed for seamless migration.

4.1.2. ASC Configuration

Besides generating the VSND, the ASC must be configured upon instantiation (i.e. prior
actual execution). Therefore concrete values of application and resource related
parameters must be send from the FS to the ASC. How these parameters are going to be
transferred are subject of section 6.1.
Some parameters may not be relevant to the FS at all but just have to be passed (e.g. an
operation mode of the ASC selected by the user). Others have impact on calculating low
level parameters and will also be used (indirectly) for the VSND. Others (IP addresses)
will directly be used for both, VSND and ASC configuration.

4.1.3. Framework internal Use

Moreover the ASCD has to provide information to enable benchmarking and modelling
prior actual execution. These data may depend on the parameters described formerly
but not the other way round.
Apart from interfacing with the framework, the ASCDs are also the base for assembling
applications from a number of ACs – the task done by the application designer (details
see chapter 5).

4.2. The ASCD Approach
Focussing on the two configuration tasks (VSND and ASC configuration) the following
statements can be derived.
 A set of parameters are solely needed on application (high) level. An example for that

would be the type of image compression to be used by an ASC. The framework
services do not need to “understand” these parameters. However they must be
passed to the ASC and may be needed to obtain resource level parameters; e.g. low
compression causes higher data rate. To let the FS figure this out, rules are needed.

 Rules describing the mapping of application (high) level parameter to quantitative
resource (low) level parameter values.

 Lookup tables complement rules for providing information about parameter values
for a given application parameter, e.g. “bandwidth of 4K RGB Cinemascopeȱ.

 Several parameters may interfere with others regarding resource requirements. This
can be regarded by setting up appropriate rules and lookup tables.

 Other parameters are pure functional like peer host addresses. These must be
interpreted and handled by the framework. Concrete values must be defined for
generating the VSND.

 Some parameters may even be passed 1:1 to the VSND, e.g. the number of threads.
I.e. they are so low level that they already describe a VSN parameter. Therefore these
do not need be visible to application designers or users.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 23/38

Apart form the configuration tasks, information is needed for framework internal usage
(benchmarking, modelling and monitoring).
There is no 1:1 relationship between the purpose and the parameters. However it can be
concluded to have
 two basic classes of parameters (high and low level),
 functionality for mapping and
 framework internal information.

4.3. Elements of the ASCD
The main content of the ASCD serves to describe resources and configuration.
 Application (high) level parameters describing input, output and processing.

Quantitative parameters have to be mapped to low level parameters for the
resources (processing, network and storage).

 Parameters for configuration (e.g. IP addresses) of the ASC and/or VSND.
Figure 11 gives an overview of the different types of ASCD elements and their purpose
within the IRMOS framework.

ASC

execution

environment

VSN

description

ASCD framework

services

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

ASC

configuration

monitoring

benchmarking

modelling

A-SLA-

templates
high level parameters

low level parameters

mapping

rules

lookup

tables

FSM model

benchmarking setup

monitoring parameters

ASC package URI

...

Figure 11: ASCD Elements and Purposes

The indicated links may be incomplete or over-saturated, e.g. the framework services
might also make use of the provided mapping rules for monitoring. On the other hand
only a subset of low level parameters is needed for ASC configuration (e.g. IP addresses)
i.e. not all of them will be passed to the ASC.
Content can be separated between ‘multi-purpose’ elements (covered by section 4.3)
and framework internals (4.4).

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 24/38

4.3.1. Application-related (high level) Parameters

Application-related parameters comprise everything needed from the application
perspective. There is no need that these are semantically “understandable” by the
framework, e.g. ÏÕÔÐÕÔ;ÆÏÒÍÁÔЄȰ*0%'ȱ. However the data types used must be generic to
enable handling by the FS like e.g. using their values for calculation according to
provided mapping rules. Data types for these parameters may comprise e.g.:
 String
 Integer
 Float4
 Boolean values (true/false)5
 Array (enumeration)

Each parameter must have an (ASCD-) unique name, e.g. to tell ouput_format_1 from
output_format_2. Many or all of these parameters are also used for ASC configuration.6

4.3.2. Resource-related (low level) Parameters

These parameters are directly related to the VSND (section 4.1.1). They comprise both
 functional parameters (e.g. IP address) and
 quantitative resource parameters (e.g. 10 gigabits per second)

All of these parameters are required for setting up the VSND; a subset is (also) passed to
the ASC configuration (in most cases, the functional ones).
Which parameters are considered mandatory – along with their definition and types –
has to be defined by the execution environment, e.g. bandwidth.
How the quantitative parameters can be obtained from high level parameters by the
framework services must be defined by rules (see 4.3.3) within the ASCD, e.g. bandwidth
as the product of certain application level parameters. Hence these parameters have to
be processed by the FS and consequently the FS have to be semantically aware of them.
The semantics must at least be sufficient to perform the appropriate mapping
operations. As resource parameters must be interpreted semantically all types used
have to be known, i.e., globally defined. Their units for values should either be fixed or
denoted by postfixes.
There may be several parameters that can be used without mapping (like IP addresses).
Some resource parameters are already defined invariable by the ASC (like the number of
threads).

4.3.3. Mapping Rules

Mapping rules define how to obtain resource related parameter values from application
related. Thus the framework services may calculate concrete values without being
application aware, e.g. outbound bandwidth = image size * colour depth * frame rate *
factor_something.7

4 To be discussed whether subtypes like integer or float are needed. Just using numbers is also how e.g.
JSON [http://en.wikipedia.org/wiki/JSON] handles this. In any case platform specific formats (“long”)
should be avoided.
5 Using 0 and 1 instead can be an alternative to avoid an additional data type.
6 Complex application configuration without impact on resources may be handled outside the framework,
e.g. by using application specific mechanism – out of scope here.
7 Values of certain parameters within a rule may be obtained or improved through benchmarking.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 25/38

These rules might also be used during monitoring.
However there may be ASCs where such rules can not be provided beforehand in a
straightforward way because of the complexity and interdependencies of the
components; e.g. closed source applications running inside container frameworks.

4.3.4. Lookup Tables

To facilitate the usage of application specific parameters like 4K_Cinemascope for an
individual AC lookup tables may be implemented to get concrete values for verbose
identifier, e.g. ÉÍÁÇÅ;ÓÉÚÅɉȰψ+;#ÉÎÅÍÁÓÃÏÐÅȱɊ. Lookup tables second the mapping rules.8
Several lookup tables are expected to be created by evaluating benchmarking results.
Thus they may be used as a generic approach for benchmarking, e.g.
ÐÒÏÃÅÓÓÏÒ;ÓÐÅÅÄɉȰφττ ÃÏÎÃÕÒÒÅÎÔ ÕÓÅÒÓȱɊ.

4.3.5. Profiles (optionally)

There may be several predefined sets of application parameters (profiles) used for
typical concrete applications and benchmarking.
In order to facilitate parameter handling reasonable groupings of settings can be
assigned to profiles. These may also be used as a basis for benchmarking, i.e. the
benchmarking setup may refer to a parameter set. Having parameter sets may facilitate
application design and resembles what is actually used in today’s application (e.g.
settings for video/image data in post production tools).

4.4. Framework Internal ASCD Content
The elements described in this section are also part of the ASCD but solely relevant for
framework internal use. They may rely on the elements described in 4.3 but not
reversely. Moreover they will most likely be expressed in a less generic way than the
parameters above.

4.4.1. Intermediate Parameters

For modelling purposes it appears to be essential to not just rely on high and low level
parameters but to have additional levels (or no levels at all) for parameters and rather
distinguish between independent and dependent parameters building a hierarchy.
As these parameters will be evaluated by the FS generic types must be used – just like
for high level parameters. However these parameters are just used framework internally
and will not be visible to an application designer, provider and client nor to the ASC.
Conceptually, these intermediate parameters are treated just like high level parameters.
In general, high level parameters are always independent, low level parameters may be
dependent (on high level and/or intermediate parameters). Intermediate parameters
most likely are dependent (on high level parameters).

4.4.2. FSM Model

The finite state machine model based on UML notation of the ASC is needed for
modelling purposes. Modelling gives the possibility to minimize the number of
benchmarking runs.

8 One could argue whether ‘lookup tables’ can be regarded just as a subset of ‘rules’.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 26/38

4.4.3. Benchmarking Setup

For IRMOS it has been concluded to perform performance analysis and benchmarking
based on ASCs rather than entire applications. Therefore a benchmarking setup is tied to
the ASC and hence belongs to the ASCD.
A benchmarking setup actually is an IRMOS application (as single ASCs cannot be
executed on the underlying resource platform). For simplicity, a reference to this
application could be put into the ASCD.
The benchmarking setup (i.e. application) for an ASC must provide all the information to
allow execution and evaluation by the FS without manual interaction.
For simplification the setup can be based on profiles (see above). A benchmarking setup
is containing upper and lower limits or discrete values of configuration parameters for
benchmarking as well as data sets. Initial estimates have to be provided as these have to
be present for setting up a benchmarking environment.
For certain ASCs with complex interactions with other ACs (or humans) the realization
of the benchmarking could become very complex. That is why it is expected to use
‘worst case’ benchmarking setups in these scenarios – the ‘system requirements’ on the
back of a computer game box also are related to all parts of the game, not just for the less
complex scenes.

4.4.4. Monitoring

For application level monitoring by the FS a list of parameters is provided. Values for
these parameters can be queried from the ASC during execution, e.g. the current frame
rate.
However in order to let the FS ‘interpret’ application level parameters correctly
additional information (e.g. about the ASC’s state) must be provided. Mapping rules and
lookup tables might be used for interpretation.
Alternatively the FS just queries generic information like health, percentage of
completion, or percentage of performance. In this case, no application specific
interpretation is necessary.

4.4.5. ASC Package

A pointer (URI) to the actual ASC (e.g. its binary package) must be contained in the ASCD
in order to pass it to the execution environment for deployment. Optionally information
about platforms could be provided if necessary.

4.4.6. Control Interfaces (optional)

A set of control commands is available to the framework services. For an application
agnostic framework like IRMOS only generic predefined controls (start, stop, pause,
resume) make sense. Each ASC provides start and stop as mandatory functionality. If the
ASC supports pause/resume as an optional functionality (which only makes sense for
stateful ASCs) a respective parameter has to be set.

4.5. ASCD Definition
The definition of the ASCD is a complex task involving multiple entities in multiple
stages. The questions to be answered here are:

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 27/38

 Who defines which elements are present in the ASCD?
 Who defines the actual values of each parameter?
 Who makes use of the elements?

And as a side-result: what can be hidden from whom to simplify usage?
In general:
 All high level parameters have to be defined before the FS processes the ASCD.
 All low level parameter values have to be defined prior execution (for creating the

VSND), i.e. the FS must process the ASCD to determine all missing values.

4.5.1. Parameter Definition Entities

The definition of ASC parameters and their values could be done during the
development-usage chain by any of these subsequent entities:
 AC developer
 Application designer
 Application service provider
 Client
 Framework services

Thus e.g. the application designer may leave options to be chosen by the user or restrict
certain parameter ranges. If the first entity in the chain mentioned above once sets a
parameter to a single value it can be considered fixed for the rest of the process. Later
entities can only restrict values (i.e. its ranges).
 The AC developer

 chooses parameters needed for resources (low level); available low level
parameters are provided by the framework

 creates parameters on application (high) level of generic types, as appropriate for
the application

 provides additional (initial) rules and lookup tables where appropriate
 defines the finite state machine model
 defines the (initial) benchmarking setup

 The application designer may preset several values for parameters or restrict value
ranges for the target application. It might make sense to add new application level
parameters, look-up tables and profiles but this should happen on application level,
not on component (i.e. ASC) level.

 The application service provider
 may preset certain parameters, e.g. IP addresses or address ranges
 potentially adapts the ASC package URI

 The client just sets selected actual parameter values on application level9
 For the framework services (FS) there are two main use cases:

 for regular execution, FS set the missing low level values, e.g. by making use of the
mapping rules

 during modelling and benchmarking, the FS refine or update lookup tables,
especially for integrating data obtained from benchmarking; the same possibly
also applies to mapping rules

9 Theoretically the client may also define low level parameters like IP addresses – to be discussed.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 28/38

4.5.2. ASCD Element Definition Summary

There are three basic steps in the lifecycle of ASCD elements.
 In the first step it has to be defined which element (e.g. parameter) goes into an

ASCD for a particular ASC. Therefore an element either has to be chosen (from
predefined elements) or created. Some parameters are created implicitly as they are
mandatory for use with the framework, like the URI of the ASC package. Defining
min/max values etc. also belongs to this step.

 In the second step concrete values have to be set for an element, either by manual
selection or automatic determination. Especially values for lookup tables may be
updated (set) through benchmarking. Moreover the mapping service (part of the FS)
may introduce (i.e. create) additional mapping rules and lookup tables as a result
from evaluating benchmarking results.

 Finally the elements and their values are used.
Table 1 shows who
 (C) chooses/creates,
 (S) who sets (i.e. writes) values and
 (U) who uses (i.e. reads) which parameters.

An action in brackets denotes that the entity might take it but that it will happen
unlikely. All table cells marked with a minus (-) denote parameters that can be hidden to
an entity as it is not of interest.
Element\
Entity

AC
Developer

Application
Designer

Application
Service
Provider

Client Framework
Services

High level
parameter
(application)

C, (S) (S) (S) S U

Low level
parameter
(resource)

C, (S) (S) (S) ((S)) S

Mapping rules C, S(initial) - - - C.U,
(Supdate)

Lookup tables C, S(initial) - - - C, U, Supdate
Profiles C, S U - - U10
FSM model S - - - U
Benchmarking
setup

S - (U) - U

Monitoring S - - - U
ASC package URI (S) (S) S - U

Table 1: ASCD Element Choice/Creation, Value Setting, Use

In a nutshell:
 The ASC developer defines which elements are needed in the ASCD along with its

(initial) values and ranges etc.
 Several entities may (manually) set parameter values.

10 Indirectly when used for benchmarking.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 29/38

 The FS must set missing low level parameter values by using mapping rules in the
regular execution case; in the benchmarking case, the FS updates respective values
or even creates new ones.

4.6. Formalized ASCD Elements
This section gives a proposal on how ASCD elements may be represented in a formalized
way. Note that the following is just for illustration; the lists may be incomplete.

4.6.1. Parameters

Table 2 provides a sketch of a formal description of the ASCD parameters. Only one
single type for all kind of parameters is used regardless of high or low level and its
purpose. As several parameters are not only used for a single dedicated purpose
different categories for parameters were discarded. Instead just one sort of parameters
is used and annotated with attributes that state its purpose. E.g. the IP address is needed
to configure the ASC (on application level!) as well as for the execution environment to
setup the network. Hence this parameter is attributed as "resource level" and "pass to
ASC". For boolean parameters a default value can be agreed (e.g. false) so they can be
used optionally but have to be set when “true”.
Element Content 11 Note
<parameter>
identifier id_string r unique identifier for parameter
description string o verbose description of parameter meaning
valtype type r type of parameter value, e.g. string, number, etc.
value <valtype> r actual value for parameter of type valtype,

reference to rule or lookup table
values_allowed array (<valtype>) o ŀǊǊŀȅ ƻŦ ŀƭƭƻǿŜŘ ǾŀƭǳŜǎ ŦƻǊ άǾŀƭǳŜέ
value_min <valtype > o ƭƻǿŜǎǘ ŀƭƭƻǿŜŘ ǾŀƭǳŜ ŦƻǊ άǾŀƭǳŜέ
value_max <valtype > o ƘƛƎƘŜǎǘ ŀƭƭƻǿŜŘ ǾŀƭǳŜ ŦƻǊ άǾŀƭǳŜέ
value_step <valtype> o steps for valid values between min and max
value_default <valtype > o ŘŜŦŀǳƭǘ ǾŀƭǳŜ ŦƻǊ άǾŀƭǳŜέ
level_app boolean r whether parameter is handled on application level,

i.e. needed for application configuration
pass_to_asc boolean r pass this parameter to ASC configuration
monitorable boolean r ASC offers monitoring for this parameter

Table 2: ASCD Parameters (formal)

Providing min and max values along with a step size or a list of allowed parameters are
regarded as alternatives.
As identifier a regular string is proposed, optionally with agreed restrictions (e.g. no
white spaces), therefore it is denoted as id_string.
All element types (denoted by valtype) have to be known to the framework. That means
that for high level parameters only predefined, generic types are allowed. So type is one
of the following.

11 Presence: r=required, o=optional (0,1), a=arbitrary (0, 1, multiple); r/boolean: false when missing

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 30/38

 <generic_type> = string | int | float | boolean | array. Generic types can be processed
by the framework without further semantic, i.e. application level knowledge, either
as input for rules or simply for passing to the ASC

 <resource_type> = ip | bandwidth | peer … (these are just examples; they have to be
taken from the VSND ontology). Resource types can and must be processed by the
framework with semantic12 knowledge. Each of these types must also be present in
(or: can be mapped to) the execution environment, i.e. the VSND.

4.6.2. Complex Elements

Beside simple parameters there are the more complex elements shown in Table 3.
Element Content p Note
<rule>
identifier id_string r unique identifier for rule
description string o verbose description of rule
valtype type r type of parameter returned by rule, e.g. number
(content) r the actual rule, referencing parameter identifiers

and/or lookup tables and containing math
operations e.g. =parameter identifier
value*constant

<lookup>
identifier id_string r unique identifier for lookup table
description string o verbose description of lookup table
valtype type r type of parameter returned by table, e.g. string
entry key/value pair a ǘƘŜ ŀŎǘǳŀƭ ǘŀōƭŜΣ ŜΦƎΦ ώάпƪέΣ мрллллллϐ
<profile>
identifier id_string r unique identifier for profile
description string o verbose description of profile
entry key/value pair a pairs of parameter identifiers and its values
<benchmark>
identifier id_string r unique identifier for benchmark setup
description string o verbose description of benchmark
profile <profile> r profile to use for this benchmark
<ascpackage>
identifier id_string r unique identifier for ASC
version string r version of ASC
uri URI r URI where binary package is available for

download
Χ other useful meta data
<fsm_model>
model (UML) o model of ASC described in UML, XMI format

Table 3: Additional ASCD Content (formal)

The FSM model (in UML) is most likely independent from other parameters.

12 We are not talking here about managing an ontology, but simply that the FS “understands” those types.
E.g. if an IP address is needed for configuration the FS have to put it in.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 31/38

5. Application Description
This chapter describes the basic approach of application descriptions (AD). ADs are
describing the topology of an application consisting of nodes and edges. In this
terminology nodes represent ACs while the edges represent the network links in
between these ACs. Application descriptions are described in a UML-like notation, where
ACs are represented by classes and network links by relations. Detailed information as
well as specific parameters is aggregated from the corresponding ASCD (see chapter 4).
The application description provides, on top of this, additional information with regards
to the workflow of the application. This especially relates to delayed start-up of ACs or
earlier shutdown of ACs and therefore reducing booking time of resources for an AC.
For a concrete application description components are connected by an application
designer using a UML-based tool. As a consequence the application description
aggregates over a subset of ASCDs out of a set of available ASCDs. These application
components are then conceptually connected using a suitable UML-based mean for
modelling these interconnects, taking into account the link properties that are defined
per individual component based on the related ASCD.
The attributes declared in an ASCD, describing an application component, are defined
with concrete values for the application based on the clients need.
This whole information, the ASCDs and the AD as well as workflow descriptions if
available, is then ready to be incorporated as a part of the final A-SLA request, as it can
also be seen later on in the Figure 12 of chapter 5.2. Once submitted to the FS, the FS will
use this information to generate the according VSND for the IRMOS execution
environment [5].
An according application description in XML-style would possibly be in XMI13 format or
something similar to make use of already defined formats and increase potential
interchangeability.

5.1. Workflows in Application Descriptions
Causal and temporal requirements for an application are modelled separately. This
includes situations where components of an application are not needed throughout the
whole application session. For example reading data with a special data reader module
is used once in the beginning and could then be shutdown once this read data is passed
on to the next component in the workflow. So these causal and temporal issues of
components directly relate to workflow modelling, which requires the information of
the application description, but further extends it by the data and information flow.
An example could be annotating a component with an explicit start and end time to
reduce resource usage during the application session and thus decreasing the cost of the
required A-SLA.

5.2. Application Description Templates
Application description templates are essentially application descriptions. In contrast to
ADs they however do not contain a complete set of well-defined parameters for all

13 http://www.omg.org/technology/documents/formal/xmi.htm

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 32/38

nodes and edges, but rather define parameter ranges for a subset of the whole
parameter set. The value range of such a parameter is derived from the parameter
description in the ASCD (see chapter 4)
An application description template which has all parameters of all components and
links exactly specified is an application description. The application description as a
result goes into the A-SLA as a part of it, comparable to the VSND in the T-SLA.
Parameters which are already defined with single values are not changeable for
someone getting an application description template. In the IRMOS scenarios this is the
client. The client can only change parameters which have been specified using a value
range in the application description template. In Figure 12 the steps from creating an
application description template towards the complete A-SLA are depicted.

Application

Description

ASCD

Application

Description

Template

Application SLA

Description

©
 U

n
iv

e
rs

it
y
 o

f
S

tu
tt
g

a
rt

ASCD

ASCD

Figure 12: Follow-up of Steps from initial ASCD to a final A-SLA

As a consequence this requires tools that can provide the necessary interface for
allowing editing of parameters only when a value range has been pre-defined for the
parameter in the application description language. This however might pose a high
requirement for adaptation to existing UML tools.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 33/38

6. Functional Interfaces
The functional interfaces between framework services and ACs are used during
execution time. These are the only on-line communication interfaces between ACs and
the IRMOS framework.
Basically there are two different needs for functional interfaces.
 The ASCs need an interface for obtaining their configuration and should be

controlled and monitored by the framework services. This happens completely
framework internal. EASCs use the same kind of interface (6.1).

 The ACC needs to obtain information from the IRMOS portal about how to access the
application, e.g. the network address of the ASC to connect to (6.2).

No specific interface is planned for passing AC binaries to the framework for
deployment. The ASCD will contain an URI pointing to an installer package. This may be
an arbitrary repository on a web server.

6.1. Internal Framework Service Interface
There are two types of interfaces between the framework and the application: the
descriptive (or: off-line) interface realized by the ASCDs which serves as a container to
deliver all information needed to handle an ASC inside the framework (see chapter 4)
and the execution time (or: on-line) interface which actually is used for communication
between ASC and the framework, more precisely the component of the framework
which is in charge of supervising the applications’ execution which in this document is
called framework service controller (FSC).
The execution time interface is discussed in this section.

6.1.1. Functionality and Purpose

The execution time interface is the only connection between an ASC and the IRMOS
framework during execution. It is used for the following purposes:
 Configuring the ASC upon instantiation, i.e. providing initial data needed for start-up

on application level: Configuring the application is a rather complex subject. There
are many aspects which are potential configurable parameters. The most basic
parameters to be configured are the ones directly related to hardware capabilities
and devices. Examples for this are IP addresses to be passed on to the application
component.

 Controlling the ASC through predefined commands (start, stop; optionally: pause,
resume): Control of an ASC can be achieved in the mentioned way. Starting and
stopping an ASC is something rather basic. However pausing and resuming an ASC
requires the ASC to be able to store its internal state for successful resuming and
even might need to further propagate the pause state to components it is relying on,
as long as this is not already done by the FS. This brings up a potential issue that
touches the border of WP4 and WP5 responsibilities. In general it should also be
considered that such commands might only be partially implemented in an AC and
can not be assumed to be always available. Possible solutions to this could be
specification of available commands in the ASCD (which seems most logical) or to be
queried by the FS based on ASC-Wrapper WS-interface.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 34/38

 Acquiring monitoring, health and state information from the ASC: Acquiring
monitoring data is something vital for the FS to effectively determine an applications’
behaviour. It further can give important information of an applications’ overall state
or at least allow conclusions about it by the client. However again it has to be
considered that an application component might not implement monitoring queries
at all, which should be considered by the FS and appropriately specified in a related
ASCD by the application component developer. The monitoring data itself is actually
sent to the monitoring service.

 Error handling on application level.
 Handling states of stateful ASC.
Figure 13 shows the described functionality and the direction of the information flow.

ASCframework

service

controller

alert, error, and state handling

configure, control, monitor

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Figure 13: Execution Interface Functionality

As this functionality is similar for all kinds of ASC (remember: the IRMOS framework
acts application agnostic) it has been decided to put it in a wrapper.

6.1.2. ASC Wrapper

The ASC wrapper resides in between the actual application component (the “ASC core”)
and the framework services. The ASC core together with this wrapper forms the entire
ASC so that – from the framework view – both appear as one single entity (Figure 14).

ASC

ASC wrapper

WS-*

framework

service

controller

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

application

specific

interface

ASC core

Figure 14: Execution Interface Wrapper

Of course the ASC’s framework interface may also be implemented natively within the
application core. However there are several practical reasons for the realisation as a
wrapper.
 The execution time framework interface part of an ASC is considered to be quite

generic as its functionality is well defined. Therefore this part is identical for all ASCs.
 The interface implementation depends on technology selected and settled by the

IRMOS framework (WS-RF, Globus Toolkit 414). Integrating these heavy weight
middleware natively in real-world applications may raise some severe complications.

 Some applications cannot be extended on source code level (e.g. for licensing
reasons). A native integration of additional interface would not be possible at all.

 The impact on the actual application (and its development) can be minimized.

14 http://www.globus.org/wsrf/ , http://www.globus.org/toolkit/

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 35/38

The wrapper ideally can be implemented in a scripting language and is configurable so
that it can easily be adapted to a specific application.

6.1.3. Configuration and Instantiation

The generic part of the configuration interface within the ASC wrapper has to parse the
data received from the framework services and pass the parameters to the ASC specific
interface, which has to be implemented by the ASC developer.
Within this part the ASC specific configuration will be created. This could be for example
an ASC specific configuration file, a command line string or environment variables. This
approach gives the developer the freedom to use her/his own configuration mechanism
or use the existing configuration interface of a monolithic application which is to be
adapted to the IRMOS platform.

6.1.4. Control

The minimal features which have to be provided by the control interface are
 Start
 Stop
The application agnostic part of the ASC wrapper has to pass the command to the
according application specific function. In the easiest case the ASC specific part just calls
the executable (e.g. “/usr/bin/<asc_name>”) for start-up. The stop command could be
implemented by a simple “killall <asc_name>”.
Advanced control features like “pause” and “resume” could be implemented as well, but
are optional, because these functionality requires native support (e.g. a scripting
interface) of the ASC. So the decision which control commands (beside start and stop) an
ASC provides has to be taken by the ASC developer and described in the ASCD.

6.1.5. Monitoring

The minimum of monitoring features are limited to a “heart-beat-like” health status
(“OK/Not OK”) due to the application agnostic nature of the framework services. Further
ASC specific monitoring data could be provided by an ASC (e.g. frames per second,
current frame number) and passed to an ACC which belongs to the application and so is
able to interpret the monitoring data. The optional monitoring features are described in
the ASCD.
The actual interface could be realized for example by a log file (continuously written by
the ASC) which will be parsed by the ASC specific part of the ASC wrapper. The generic
part of the ASC wrapper could trigger the monitoring process.

6.2. External Framework Interface
The external framework interface is needed for enabling ACCs to access an IRMOS
application.15 A typical example would be the network address of the ASC to connect to;
in a common case this address is defined by the framework upon generating the VSND.
This start-up information is expected to be delivered by the IRMOS portal, e.g. via web
interface or e-mail. The content of this information is similar to the one passed to each
ASC upon start-up (see section 4.1.2).

15 Interface-wise external ASCs (EASC) are treated just like (internal) ASCs.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 36/38

This information has to be passed to the ACC. A simple but feasible approach is to use a
light-weight launcher application which acts as a wrapper between the IRMOS portal
and the actual ACC (Figure 15).

ACC

application launcher

initialisation

information

IRMOS

portal
application

specific

startup

©
 D

e
u

ts
c
h

e
 T

h
o

m
s
o

n
 O

H
G

Figure 15: IRMOS-ACC Interface

A universal wrapper is started through the usual MIME-type16 mechanism by a web
browser (or through file-type respectively), translates the data from the generic IRMOS
specific format into start-up-parameters, command-line options or application specific
initialisation files for the ACC and finally launches it with this configuration information.

16 Multipurpose Internet Mail Extensions, Part 2: Media Types, http://tools.ietf.org/rfc/rfc2046.txt

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 37/38

7. Conclusion
In this document the requirements for two sets of interfaces are investigated:
requirements for the application interface and requirements for the system interface.

Taking these requirements into consideration, three types of interfaces are specified in
this deliverable:
1. The application service component description (ASCD) is defined during the

application development phase. This ASCD shall describe all parameters of the
application component. The ASCD is also needed for the configuration of the service
component, the framework services, and in the execution environment for the VSN
description. For execution it is necessary to extract the low level parameters from
the high level parameters. This can be done by mapping rules or by lookup tables.
The framework itself needs parameters from the ASCD for modelling, benchmarking,
and monitoring. The definition of the ASCD is developed with the specification of the
elements and parameters.

2. In the application service design phase the application description (AD) defines the
topology of an application. The application description provides additional
information about the workflow of the application. The proposed application
description template specifies all parameters of all components and links.

3. The functional interfaces between framework services and ACs are used during
execution time. The ASCs need an interface for obtaining their configuration and
should be controlled and monitored by the framework services. An ASC wrapper is
proposed between the actual application component and the framework service.
Client components running outside the framework obtain their configuration via the
IRMOS portal.

The interface description given in this deliverable is a very important input to WP5 for
the interface to the IRMOS framework service.

IRMOS IRMOS_WP4_D4_2_1_
GILABS_v1_0.doc

Interactive Realtime Multimedia Applications on Service Oriented Infrastructures Created on 03/07/2009

 D4.2.1 Interface definition to the IRMOS SOI

© GILABS and other partners of the IRMOS consortium 2008 -2009 page 38/38

8. References
[1] IRMOS D2.1.1: Initial version of Requirements Analysis Report
[2] IRMOS D3.1.2: IRMOS Overall Architecture
[3] IRMOS D4.1.1: Definition and implementation of the three scenarios and its real

time requirements
[4] IRMOS D5.1.1: Models of real time applications on service oriented

infrastructures
[5] IRMOS D6.1.1: Formal description language for application requirements of

Execution Environment
[6] IRMOS_WP6_7_ISONI_White_Paper
[7] IRMOS D7.1.1: ISONI addressing schemes

