

Service Level Agreements in Virtualized Service Platorms

Bastian Koller (koller@hlrs.de)

ICT 2008, Lyon

November 2008

Table of Contents

- Requirements on SLAs
- SLAs in Virtualized Services Platforms
- SLAs in IRMOS
- SLAs in BREIN
- Future trends and challenges

Requirements on SLAs

- Easy usage
- Automated SLA negotiation
 - Automated mechanism with minimal user interaction
 - User decides the degree of automation
 - Multiple offer/counter-offer steps
- Dynamic SLAs
 - Agility of the whole SLA Management
 - Quick and focused reaction on changes in the environment
 - Renegotiation of SLAs

H L R S

SLAs in Virtualized Platforms with Real-time requirements

- SLAs and the services they are about will have different life cycles.
- Real-time constraints need to be considered in the whole SLA Management process, including negotiation.
- SLAs on different levels have different requirements.

SLAs in IRMOS

- SLAs at two levels in IRMOS:
 - Application SLAs (high level, "Classical" SLA)
 - Between Application Provider and Customers
 - Technical SLAs (low level, "Classical" SLA + VSN description (VSNd))
 - Between ISONI Provider and IRMOS Provider
- The underlying resources (network links, execution environments,...) are virtualized, so the platform must
 - advertise and offer a mechanism to discover the general supported capabilities;
 - provide SLA templates to the upper layer;
 - provide a means to reserve and book concrete requests;
 - complete the SLA negotiation by
 - mapping request to internal parameters (QoS classes,...) and
 - instantiating the virtualized resources.

SLAs in BREIN

- Integration of Multiagent and Semantic Web concepts in the Grid to allow for
 - Service discovery on basis of SLA capabilities
 - clear understanding of different SLA "languages" (term definitions)
 - mapping between contractual terms and system terms
 - Dynamically negotiate QoS terms
 - Automatically understand the infrastructure capabilities for negotiation purposes
 - Optimize negotiation wrt business goals & policies
 - Compare current SLAs to prioritize (intentionally violation)
 - Optimize resource usage whilst still meeting the SLA

Future trends and challenges

- More examples of meaningful SLA use are needed to promote further uptake from non-experts
- Legal issues are completely ignored
 - Maybe a topic for the next calls
- Signing SLAs apart from legal issues is an open issue
- No elaborate standard negotiation protocol (WS-Ag is too simple)

Thank you!

Bastian Koller
University of Stuttgart
koller@hlrs.de

Further Information

http://www.irmosproject.eu

http://www.gridsforbusiness.eu

The research leading to these results has received funding from the EC Seventh Framework Programme FP7/2007-2011 under grant agreement n° 214777 and the EC Sixth Framework Programme (IST-034556)

Application SLAs

- "Classical" SLAs with
 - application-specific parameters and
 - QoS criteria.

Technical SLA (I)

- Technical SLA = "Classical" SLA + VSN description (VSNd),
 - □ incl. Service Components description, links to binaries, topology, links and characteristics

ICT 2008, Lyon

Technical SLA (II)

- The underlying resources (network links, execution environments,...) are virtualized, so the platform must
 - advertise and offer a mechanism to discover the general supported capabilities;
 - provide SLA templates to the upper layer;
 - provide a means to reserve and book concrete requests;
 - complete the SLA negotiation by
 - mapping request to internal parameters (QoS classes,...) and
 - instantiating the virtualized resources.